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Droplet nucleation and Smoluchowski’s equation with growth and injection of particles

Stéphane Cueille and Cle´ment Sire
Laboratoire de Physique Quantique, UMR C5626 du CNRS, Universite´ Paul Sabatier, 31062 Toulouse Cedex, France

~Received 27 June 1997; revised manuscript received 23 September 1997!

We show that models for homogeneous and heterogeneous nucleation ofD-dimensional droplets in a
d-dimensional medium are described in the mean field by a modified Smoluchowski equation for the distri-
butionN(s,t) of droplet massess, with additional terms accounting for exogenous growth from vapor absorp-
tion and injection of small droplets when the model allows renucleation. The corresponding collision kernel is
derived in both cases. For a generic collision kernelK, the equation describes a clustering process with clusters

of masss growing between collision withṡ}sb and injection of monomers at a rateI . General properties of
this equation are studied. The gel criterion is determined. Without injection, exact solutions are found with a
constant kernel, exhibiting unusual scaling behavior. For a general kernel, under the scaling assumption
N(s,t);Y(t)21f „s/S(t)…, we determine the asymptotics ofS(t) and Y(t) and derive the scaling equation.
Depending onb andK, a great diversity of behaviors is found. For constant injection, there is an asymptotic
steady state withN(s,t5`)}s2t andt is determined. The case of a constant mass injection rate is related to
homogeneous nucleation and studied. Finally, we show how these results shed some light on heterogeneous
nucleation withd5D. For d5D52 ~disks on a plane!, numerical simulations are performed, in good agree-
ment with the mean-field results.@S1063-651X~98!09401-X#

PACS number~s!: 64.60.Qb, 02.50.2r, 82.20.Mj
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I. INTRODUCTION

Aggregation models are relevant to describe a great di
sity of practically important physical phenomena in fiel
ranging from atmosphere sciences to cosmology, includ
material sciences and chemical engineering@1–4#. A remark-
able example isdropwise condensationon a substrate@5#, for
instance, water on a cold window pane, which bears on
portant implications in heat transfer engineering and mate
sciences and generates fascinating droplet patterns,
calledbreath figures@6#. Although the underlying physics i
rich ~see@5#!, simplified aggregation models have been s
cessfully introduced to simulate the late stage of drop
growth and coalescence@5,7–13#. These models are of bas
cally two kinds. On the one hand, inheterogeneous nucle
ation models, one starts from a fixed number of nucleat
sites ~in physical situations these might be dust particl
substrate defects, etc.!. Droplets grow on these sites throug
vapor absorption, and when two neighboring droplets ov
lap, they coalesce to form a single droplet, thus reducing
number of droplets. On the other hand, inhomogeneous
growth models @8#, nucleation can occur anywhere on th
substrate: Some very small droplets are randomly depos
which leads to the growth of existing droplets and the c
ation of new small droplets if deposition occurs in a fr
zone.

Experiments and numerical simulations@5,9# show that
the time-dependent droplet mass distributionN(s,t) (s being
the mass of the droplets!, exhibits dynamic scaling, i.e., tha
for long times N(s,t)}S(t)2u f „s/S(t)…. S(t) is a typical
droplet mass~proportional tô s2&/^s&2) and has a power-law
divergence at long timesS(t)}tz. u and z are dynamic ex-
ponents that depend not on the fine details of the model
only on its main features, such as its conservation laws
heterogeneous growth models, the scaling functionf (x) is
narrow, whereas in homogeneous growth one observes
571063-651X/98/57~1!/881~20!/$15.00
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superposition of a narrow distribution of large droplets@with
masses of the same order asS(t)], and a broad distribution
of small droplets with a power-law divergence of the scali
function f (x)}x2t at smallx. t is nontrivial and less thanu
@9#.

A complete theoretical understanding of these results
still lacking and the prediction of thepolydispersity exponen
t is a challenge. Most analytical treatments concern hete
geneous growth and start from the assumption that the
tribution of masses is narrow@7,12#. Therefore, a theory for
the distribution function, describing at least simplified com
puter models, is highly desirable to get free of this assum
tion in the case of heterogeneous growth and to be abl
treat homogeneous nucleation.

As far as standard aggregation models, such as diffus
limited cluster cluster aggregation@14,15#, are concerned, a
great deal of information can be gained from Smolucho
ski’s mean-field approach@16#: Neglecting fluctuations and
multiple collisions, one can write down a rate equation

] tN~s,t !5
1

2E N~s1 ,t !N~s2s1 ,t !K~s1 ,s2s1!ds1

2N~s,t !E N~s1 ,t !K~s,s1!ds1 , ~1.1!

where the collision kernelK(s1 ,s2) is the coalescence rat
between droplets of massess1 and s2. Smoluchowski’s ap-
proach is valid above an upper critical dimension, which
often 2, but is in principle model dependent@17#. van Don-
gen and Ernst@18#, classified the kernels according to the
homogeneity and asymptotic behavior:

K~bx,by!5blK~x,y!, ~1.2!
881 © 1998 The American Physical Society
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K~x,y!;xmyl2m~y@x!. ~1.3!

Nontrivial polydispersity exponents appear in the casem50
@18–20#, whereas form.0, t is equal to 11l and for m
,0 the distribution is bell shaped.

However, Eq.~1.2! does not describe aggregation mode
such as droplets nucleation models, for which clusters
only grow through collisions~coalescence! but also collect
some mass from the ‘‘outside’’~vapor! between collisions.
Hence an adaptation of Smoluchowski’s approach to t
breath figures and related models is required and is the
pose of the present work. The article is organized as follo

In Sec. II we discuss nucleation models introduced
Family and Meakin@9# and derive the corresponding Smol
chowski equation under the mean-field assumption. In
generalized Smoluchowski equation, an additional ex
enous growth term]s(s

bN) on the left-hand side of Eq.~1.1!
accounts for clusters growing between collisions withṡ}sb

~exogenous growth!, while a time-dependent source ter
I (t)d(s2s0) describes renucleation in empty spaces.

Section III is a general study of the extended Smolu
chowski equation corresponding to aggregation withcluster
exogenous growthandinjectionwith a generichomogeneous
kernel. First, we investigate the gelation criterion, depend
on l defined in Eq.~1.2!, and show that the system is no
gelling for max(l,b)<1. Then we focus on the case witho
injection (I 50). We exhibit some exact solutions (K51,
with b50 or b51). We study extensively the properties
the scaling solutions, depending onb, l, andm. The com-
petition between collisions and exogenous growth leads
much richer behavior than for standard Smoluchowsk
equation. We pay special attention to the occurrence of p
dispersity exponents and show that the methods recently
troduced by the present authors@20# can be directly used to
compute nontrivialt exponents when they appear.

Returning toI .0, we first consider constant injection o
monomer. We find that the distribution reaches at an infin
time a polydisperse steady state with a power-law largs
decayN`(s)}s2t, with t5(31l)/2 if b,(11l)/2 andt
521l2b if b.(11l)/2. Then we consider the more sp
cific case, relevant to homogeneous nucleation, of a cons
mass injection rate@with a self-consistentI (t)] and l52b
21. We show that the injection rateI (t) is vanishing, in
agreement with the droplet model. We also investigate s
ing solutions and suggest that including pair correlatio
may be necessary to find a consistent scaling for homo
neous growth.

In Sec. IV we apply the scaling mean-field results to h
erogeneous growth withd5D. Droplets radiir 5s1/D grow
as ṙ}r v @b511(v21)/D# and a nontrivial polydispersity
exponentt occurs forv>0, while the scaling function van
ishes at a small argument forv,0. Mean-field polydisper-
sity exponents are computed using the variational met
introduced in@20#. Numerical results for the scaling functio
are in qualitative agreement with mean-field results and
expected crossover from monodispersity to polydispersit
v50 is observed.

Note that throughout the article, we shall use the wo
‘‘polydisperse’’ and ‘‘monodisperse’’ in a quite specifi
sense. A mass distribution will bepolydisperseif the scaling
,
ot

at
r-

s.
y

e
-

g

a
s
y-
n-

e
-

nt

l-
s
e-

-

d

e
at

s

function f (x) diverges whenx→0. If f (x)→0 ~bell-shaped
distribution!, it will be monodisperse. When all clusters have
exactly the same mass, we shall say that their mass distr
tion is strictly monodisperse.

Part of the results concerning the case without inject
have already appeared in a summarized form in@21#.

II. DROPLET DEPOSITION, GROWTH, AND
COALESCENCE IN THE MEAN FIELD

As mentioned in the Introduction, interest in dropl
nucleation computer models was primarily aroused by pr
tical applications in heat transfer engineering~see references
in @5#!. In the past ten years, however, and since the sem
work of Beysens and Knobler@6#, the focus was set on th
formation of breath figures~see figures in@5#!, with com-
puter models aimed to study the kinetics of the droplet m
distribution @8–10,12,5#, the asymptotic surface~or line!
coverage@11#, or the time evolution of the ‘‘dry’’ fraction
~the surface fraction that has never been covered by
droplet! @13#.

In this article we shall consider the specific models int
duced by Family and Meakin@8,9# for both homogeneous
and heterogeneous nucleation. We shall now describe t
models and derive the corresponding Smoluchowski eq
tion. These equations are special cases of a genera
Smoluchowski equation, which will be studied in Sec. III.

A. Homogeneous nucleation

The deposition and coalescencemodel@8# consists in the
following algorithm. Betweent and t1dt a small droplet of
masss0 is randomly deposited on thed-dimensional sub-
strate, where it forms a spherical cap with radiuss0

1/D . If it
overlaps an existing droplet of masss, they coalesce to form
a new droplet with masss1s0 and radius (s1s0)1/D, cen-
tered at the center of mass of the two coalescing droplet
the new droplet overlaps a surrounding droplet, they coale
with the same rule, and so on.

Snapshots of droplets configurations obtained by simu
tion of the deposition and coalescence model ford52 and
D53 are qualitatively very close to the one obtained
some experiments of vapor deposition of thin films@9#. The
striking feature is the coexistence of two distinct populatio
of droplets: a population of big droplets, with essentially t
same mass, surrounded by a population of smaller drop
with a broad dispersion of masses. At late times, the dis
bution of droplet massesN(s,t) exhibits dynamic scaling,

N~s,t !;S~ t !2u f „s/S~ t !…, ~2.1!

where the typical mass scaleS(t) can be defined by

S~ t !5
^s2&

^s&
5

*s2N~s,t !

*sN~s,t !
. ~2.2!

The dynamical exponentsu andz can be determined from
physical arguments@5,9#. Since the mass injection rate
constant and the mass is conserved in the coalescence
cess, we must have
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t}E
0

1`

sN~s,t !ds}S~ t !22uE
0

1`

x f~x!dx, ~2.3!

which, from the definition ofz, implies the scaling lawz(2
2u)51. Then we note that the fraction of substrate ‘‘are
occupied by the droplets is

E
0

1`

sd/D N~s,t !ds}S~ t !11d/D 2u ~2.4!

and cannot diverge or vanish, so thatu511d/D. From the
scaling law, we getz5D/(D2d).

The scaling behavior of the total number of dropletsn(t)
depends on the small-x behavior of the scaling functionf (x).

FIG. 1. Scaling of the mass distributionN(s,t) for droplet depo-
sition with d51 andD53. The picture shows the excellent da
collapse, with the theoretical value 4/3 foru, of the distribution at
four different times whenS has reached the values 6053, 11 11
15 539, and 17 112, respectively. The scaling function is compo
of a polydisperse contribution of small droplets and a monodisp
contribution of droplets of mass of orderS(t).
’

If the scaling function is integrable in zero, it is easily se
that n(t)}S(t)12u, whereas if f (x)}x2t with t.1, n(t)
}S(t)t2u.

In @9# excellent scaling was obtained with the theoretic
value of u for variousd and D. Measured values ofz are
also fully consistent with the theory. As an illustration,
typical scaling function is shown in Fig. 1 from our simula
tions in d51 with D53. The data collapse is obtained wit
the theoretical valueu54/3. The scaling function is clearly
bimodal. A broad droplet distribution, with a small-argume
divergence of the scaling function associated with an ex
nent t bigger than 1, is well separated from a bell-shap
distribution of bigger droplets centered arounds5S(t). Fol-
lowing the definitions given in the Introduction, we shall s
that the scaling function of the population of small~big!
droplets ispolydisperse~monodisperse!. Most of the droplets
in the system contribute to the small droplets distributio
which determines, sincet.1, the behavior ofn(t), whereas
the population of bigger droplets contains most of the m
andS(t) is the typical mass of big droplets.

In @9# the polydispersity exponentt was determined di-
rectly from the numerical determination of the scaling fun
tion, but with important uncertainty due to statistical limit
tions, and it may be better to extractt from n(t)
}@S(t)# (t2u). In all cases it is found that 1,t,u @for in-
stance, our simulations ind51 yield t51.264,3/2 (D
52), t51.18,4/3 (D53), and t51.074,5/4 (D54)].
The value oft does not seem to be simply related tod and
D. Such nontrivial polydispersity exponents are quite f
quent in aggregation models and occur even in the m
field through Smoluchowski’s equation, as mentioned in
Introduction. Therefore, it is interesting to derive a Smo
chowski equation for this model and check the mean-fi
value oft, if possible.

Family and Meakin@9# showed from scaling argument
that the coalescence kernel should have a homogeneil
52d/D21, but they did not determine its specific form. W
proceed now to the derivation of the equation. Neglect
multiple collisions, we examine the different events affecti
the distributionN(s,t).

,
d

se
rlap
Betweent and t11, a droplet of radiuss5ks0 is created as the outcome of the following processes.
~i! A droplet of masss0 falls on a droplet of masss1<s2s0, which occurs with probabilityV1(s1

1/D1s0
1/D)d, V1 being a

mass-independent geometric factor. The droplet of masss1 consequently reaches a masss11s0. Then it coalesces with a
neighboring droplet of masss25s2s12s0 provided that they interpenetrate. The number of such events is

V1V2N~s1!N~s2!~s1
1/D1s0

1/D!dE
0

~s11s0!1/D2s1
1/D

G~s1 ,s2 ,r ,t !~s1
1/D1s2

1/D1r !d21dr ~2.5!

(V2 is another geometric factor!. G(s1 ,s2 ,r ,t) is the probability density that a given droplet of masss1 has a droplet of mass
s2 at distances1

1/D1s2
1/D1r as the first neighbor.

~ii ! A droplet of masss0 falls on a droplet of masss2s0 with which it coalesces and the obtained droplet does not ove
any other droplet,

~number of events!5V1N~s2s0!@~s2s0!1/D 1s0
1/D#d

3S 12V2 (
s15k1s0

N~s1!E
0

s1/D2~s2s0!1/D

G~s2s0 ,s1 ,r ,t !@~s2s0!1/D1s1
1/D1r #d21dr D . ~2.6!
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~iii ! A droplet falls in an empty space between droplets

~number of events!}@12f~ t !#ds,s0
, ~2.7!

where@12f(t)# is the empty area fraction.
A droplet of radiuss disappears due to the following events: it coalesces with a droplet of radiuss11s0 , which has grown

~number of events!5V1V2N~s!N~s1!~s1
1/D1s0

1/D!dE
0

~s11s0!1/D2s1
1/D

G~s1 ,s,r ,t !~s1
1/D1s1/D1r !d21dr; ~2.8!

or it grows

~ number of events!}N~s!~s1/D1s0
1/D!d. ~2.9!

To describe the long-time scaling regime, we can take the continuous limit of small~but finite! s0, to obtain the continuous
kinetic equation

] tN~s,t !1]s@sd/DN~s,t !#5
1

2E0

s

N~s1 ,t !N~s2s1 ,t !K~s1 ,s2s1 ,t !ds1 , ~2.10!

2N~s,t !E
0

1`

N~s1 ,t !K~s,s1 ,t !ds11I ~ t !d~s2s0!, ~2.11!

where the symmetric kernelK(x,y,t) is

K~x,y,t !5 lim
«→0

xd/D/«E
0

~x1e!1/D2x1/D

G~x,y,r ,t !~x1/D1y1/D 1r !d21dr1~symmetric terms!. ~2.12!
lt
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The time and mass units were redefined to eliminate mu
plicative constants in the equation.I (t) is consequently
renormalized toI (t)5c@12f(t)#, wherec is a constant tha
could be easily determined, but is not essential to our disc
sion. It should be noticed that the distribution function
zero belows0 at anyt.

The mean-field approximation consists in neglecting s
tial correlations, i.e., in takingG(x,y,r ,t)51. We get

K~x,y,t !5~x~d11!/D211y~d11!/D21!~x1/D1y1/D!d21.
~2.13!

This kernel has the homogeneityl52d/D21 derived from
scaling arguments by Family and Meakin@9#. Equation
~2.10! is not a standard Smoluchowski equation since it
cludes two additional terms: anexogenous growthterm
]s@sd/D N(s,t)#, describing intercollision growth of droplet
through absorption of small droplets, and a time-depend
injection term. Moreover, the injection term isself-
consistent: Being proportional to the free surface fraction,
is a functional ofN(s,t) ~see Sec. III D!.

For the numerical model,I (t) vanishes at long times sinc
the surface fraction covered by droplets goes to one in
mogeneous growth processes, through renucleation in em
spaces~in heterogeneous nucleation models, the cover
goes to a valuef̄,1). In fact, our numerical simulations i
one dimension show that in the scaling regime 12f(t)
}n(t), as illustrated in Fig. 2. This result is easily recover
from the scaling theory,
i-

s-

-

-

nt

o-
ty
e

12f~ t !512VS~ t !11d/D2uE
s0 /S~ t !

1`

xd/D f ~x!dx,

~2.14!

whereV is a geometric constant factor, which implies, sin
f(t)→1 and u511d/D, that *0

1`xd/Df (x)5V21. Since
f (x)}x2t, we see that 12f(t)}@s0 /S(t)#11d/D2t if t.1
and 12f(t)}@s0 /S(t)#d/D if t,1, which yields 12f(t)

FIG. 2. Plot of the free substrate area 12f(t) versus the num-
ber of dropletsn(t) for a simulation of homogeneous growth wit
d51 and D53. At long times~small n), the two quantities are
proportional, as understood in the framework of the scaling the
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}n(t). It is not obviousa priori that the dynamics of Eq
~2.10! will also lead to the vanishing ofI (t) since geometri-
cal constraints are only approximatively included. This po
will be discussed in Sec. III.

B. Heterogeneous nucleation

Heterogeneous nucleation@5# corresponds to the case
common for water vapor condensation, when impurities
the substrate play a major role in droplet nucleation. A da
life example would be water condensation on a dusty pa
Nucleation occurs only on some nucleation centers, exis
droplets grow from vapor, and coalesce when coming i
contact, but no new droplet can nucleate in empty space

In thegrowth and coalescencemodel introduced by Fam
ily and Meakin@9#, one starts from an initial population o
droplets of same radius without overlap. In the dynam
individual droplets grow between collisions with

ṙ 5Arv ~2.15!

or, equivalently (s5r D),

ṡ5DAsb, ~2.16!

whereb5(v1D21)/D andA is constant. Equation~2.15!
has been known as type-I growth since the important th
retical work of Briscoe and Galvin@12# and is relevant to
physical systems for which mass and/or heat transfer
cesses on the substrate are limited. In the following theo
ical discussion we shall always setA51/D, but in numerical
simulationsA was set to 1~this just corresponds to a chang
in the time unit!. We must havev<1 ~or, equivalently,b
<1); otherwise the system gels as the mass of an individ
droplet growing without collision diverges at finite time. On
step of simulation consists in increasing the radii of all dro
lets according to a discretization of Eq.~2.15! and then track-

FIG. 3. Typical scaling function for heterogeneous nucleat
with d,D. The figure shows the data collapse ofN(s,t) in a simu-
lation of growth and coalescence withv521, d52, andD53.
The scaling function is clearly monodisperse and vanishes ax0

'0.2.
t

n
y
e.
g
o
.

,

o-

o-
t-

al

-

ing down and resolving all the resulting coalescence eve
with the same rules as for homogeneous nucleation.

Droplets configurations obtained with this model ford
,D and various values ofv are qualitatively very different
from those obtained with the deposition and coalesce
model: there is now a single population of droplets with
bell-shaped mass distribution@9#, as shown on Fig. 3 from
simulations withd52, D53, andv521. As in deposition
and coalescence, an asymptotic scaling regime is reache
long times and the theoretical valueu511d/D can be de-
rived from the fact that the surface coverage tends to a c
stantf̄.

A distinctive feature of heterogeneous growth is thatf̄,1
~see@7,9# and references in@5#! and does not significantly
depend onv. The value of the asymptotic coverage w
computed by Derridaet al. @11# for several simplified models
of coalescence in one dimension. Vincent@7# derived f̄
50.57 from an approximate log-normal scaling solution to
Smoluchowski mean-field equation~see below! with four-
body collisions included ford52, D53, and v522, in
excellent agreement with the numerical valuef̄50.55.

The exponentz can beheuristicallydetermined from the
fact thatS(t) is the only mass scale in the asymptotic regim
which implies that the distance between dropletsn1/d scales
asS1/D. Then, from a rough evaluation of the total collisio
rate, it is justified in@5# that the growth law of the typica
droplet mass in the asymptotic regime is the same as tha
an individual droplet in the absence of collision, except fo
multiplicative constant renormalizing the growth rate

Ṡ}Sb, ~2.17!

which leads to

z5
1

12b
5

D

12v
. ~2.18!

These scaling results will be established for the correspo
ing Smoluchowski equation in Sec. III.

A consequence of Eq.~2.18! is that the scaling function
f (x) cannot diverge at smallx since a simple argumen
shows thatf (x) is strictly zero below a finitex0.0, as can
be seen in Fig. 3~see also Fig. 2 in@11#!. Consider the
smallest droplets surviving att. These are the descendants
the droplets in the initial condition that have not experienc
any collision sincet50. As a consequence, the mass of t
smallest surviving dropletss0(t) is, for a strictly monodis-
perse initial conditionN(s,0)}d(s2s0),

s0~ t !}@s0~0!12b1~12b!t#1/~12b! ~2.19!

ands0(t)/S(t) approaches a constant valuex0.0, indepen-
dent ofs0(0), whent→`. SinceN(s,t)50 for s,s0(t), we
see thatf (x)50 for x,x0. For d52, D53, andv521,
our numerical results yieldS(t);16 t1/(12b), with b51/3,
whereass0(t);@(12b)Dt#1/(12b) from Eq. ~2.19! (D ap-
pears in the formula sinceA51 in the simulation!, which
leads tox0'0.2. This value ofx0 is fully consistent with
Fig. 3.

n
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If b51, the growth ofs0(t) is exponential in time and the
situation can be different. The collisions renormalize t
growth of S(t) and we expect at long times

Ṡ;@11e~ t !#S~ t !, ~2.20!

wheree is strictly positive. Even whene(t) asymptotically
vanishes,S(t) can be much bigger thans0(t), leading tox0
50 and a possibly polydisperse distribution. This behav
will be found in Sec. III for the corresponding Smolu
chowski equation. We shall see thatS(t) is also much bigger
than s0(t) in the mean fieldin the cased5D, even forb
,1, asS(t)}(t lnt)1/(12b), and that polydispersity can occu
in this case. Indeed, Family and Meakin@9# observed a quali-
tatively different, broader mass distribution, with polydispe
sity, in numerical simulations ford5D. This case will be
further investigated in Sec. IV.

Now we proceed in deriving Smoluchowski’s equati
for this problem. If we assume that droplets do not coales
we can find the contribution to Smoluchowski’s equation d
to the growth of individual droplets. The corresponding te
must conserve the number of particle since no new drople
introduced in the system and the equation is just a contin
equation for the distribution functionN(s,t),

] tN~s,t !1]s~sbN!~s,t !50. ~2.21!

If we bring coalescence into the picture, the rate of c
lescence of two droplets of massess1 and s2 is, under the
mean-field assumption, the time derivative of the over
probability proportional to (s1

1/D1s2
1/D)d, which is propor-

tional to (s1
1/D21ṡ11s2

1/D21ṡ2)(s1
1/D1s2

1/D)d21. So eventually

] tN~s,t !1]s~sbN!~s,t !

5
1

2E0

s

N~s1 ,t !N~s2s1 ,t !K~s1 ,s2s1!ds1

2N~s,t !E
0

1`

N~s1 ,t !K~s,s1!ds1 , ~2.22!

with

K~x,y!5~xv/D 1yv/D!~x1/D 1y1/D!d21. ~2.23!

Once again, redefinition of the time and mass unit was u
to set multiplicative constants to one in the equation.

Here we would like to point out a mistake in an ear
numerical and theoretical work by Vincent@7#. Vincent stud-
ied heterogeneous growth withd52, D53, and v521,
relevant to epitaxial growth. He simulated early stages
growth ~because he could not reach the long-time asympt
regime! and derived a mean-field Smoluchowski equation
the radius distributionc(r ,t)5Dr 121/DN(r D,t). Vincent
found the correct collision kernel, but he erroneously deriv
that the change inc due to growth alone was2r 22] rc,
instead of the correct2] r(r

22c). As a consequence, hi
equation does not conserve the number of particles when
collision term is suppressed. This might be one of the r
sons why Vincent had to include three- and four-body c
lescence events in his Smoluchowski equation to reco
e

r
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e
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d
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correct values for the fraction of area covered by the dr
lets, but the incorrect right-hand side may as well have o
minor consequences in his approximate computation.

An interesting case arises whenv511d2D since, as
noticed by Family and Meakin@9#, this corresponds to the
growth exponent of large droplets due to absorption of
posited small droplets in homogeneous growth. In this ca
Smoluchowski’s equation describing homogeneous gro
differs from the one describing heterogeneous growth o
by the injection term. Exponentsu and z are the same for
both models and numerical simulations@9,5# show that the
scaling function for large droplets in homogeneous growth
very similar to the whole scaling function of heterogeneo
growth.

Thus both growth and coalescence, and deposition
coalescence, are described in the mean field by a genera
Smoluchowski equation, with additional terms accounti
for intercollision exogenous growth of particles~droplets!.
Therefore, it is interesting to perform a general study of t
equation ~with a generic kernel! and to see if its scaling
behavior is consistent with the numerical results for dropl
nucleation.

III. SMOLUCHOWSKI’S EQUATION
WITH GROWTH AND INJECTION

We consider the generalized Smoluchowski equation

] tN~s,t !1]s@sbN~s,t !#

5
1

2E N~s1 ,t !N~s2s1 ,t !K~s1 ,s2s1!ds1

2N~s,t !E N~s1 ,t !K~s,s1!ds11I ~ t !d~s21!,

~3.1!

K(x,y) being a general homogeneous kernel with expone
l andm defined as in Eq.~1.2!. The equation describes a s
of particles or clusters that collide with a mass-depend
collision rateK and grow between collisions with~see be-
low!

ṡ5sb. ~3.2!

In addition, some small particles~monomers! are injected
with the injection rateI (t), with the possibility thatI is a
functional ofN(s,t), as found for deposition and coalescen
in Sec. II. A discrete version of this equation without th
monomer injection term and with aconstant collision kernel
has been investigated for 0<b<1 by Krapivsky and Redne
@22#. We shall see below that their results are independe
recovered as special cases of our general discussion o
continuous equation, in the scaling regime where the disc
structure of the equation plays no role.

When the growth and injection terms are absent, the eq
tion reduces to Smoluchowski’s equation and its scal
properties have been extensively studied@18–20#, but it is in
no way trivial. Even in this case, very few analytical sol
tions of Smoluchowski’s equation are available. For the c
stant kernelK(x,y)51, an exact solution is known@16#,
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with N(s,t);4/t2e22s/t. Other solutions concern the kerne
x1y @23# and xy @24#. Despite its apparently simple struc
ture, Smoluchowski’s equation is yet another example o
highly nontrivial mean-field theory.

In the following we study the long-time properties of th
solutions of Eq.~3.1! and we exhibit a rich diversity of be
haviors depending on the parametersb ~characteristic of ex-
ogenous growth! andl andm ~characteristic of the collision
kernel!. We use the classical notationMa(t) for the ath
moment of the distribution*saN(s,t)ds.

A. Gelation criterion

The first interesting question is the possible occurrenc
a gelation transition for such equations. Gelation correspo
to the formation of an infinite clusterat finite time. Without a
growth term, nongelling kernels correspond tol<1 @18,19#.
How is this modified? In the absence of an infinite clust
the evolution equation for the total mass in the systemM1(t)
is obtained by multiplying Smoluchowski equation bys and
integrating over all masses,

Ṁ1~ t !5Mb~ t !1I ~ t !, ~3.3!

which is physically obvious fromṡ5sb. To discuss gelation
we have to be more cautious. Adapting the argument for
standard Smoluchowski equation@25,26,18,19#, let us con-
sider the mass flux from clusters of massess<L towards
clusters of massess.L,

JL~ t !52E
0

L

s] tN~s,t !ds1E
0

L

ṡN~s,t !ds1I . ~3.4!

From Eq.~3.1! we get

JL~ t !5L11bN~L,t !1E
0

L

dxxN~x,t !E
L2x

1`

dyK~x,y!N~y,t !,

~3.5!

where the first term is the mass flux throughs5L due to the
growth of individual particles, while the second term is t
mass flux due to collisions. If there is no gelationJL(t) must
vanish whenL→` and Eq.~3.3! holds at any time. If there
is gelation att5tg , there is an infinite cluster, or gel, in th
system fort.tg andJL(t) is nonvanishing fort.tg . At the
gel point, J`(t)5 limL→`JL(t) may be infinite, but not for
t.tg . The postgel distribution must have a slowly decayi
large-s tail in order thatJ`(t) be finite. If we make the
ansatzN(s,t>tg);A(t)s2t at larges,

L11bN~L,t !;A~ t !L11b2t, ~3.6!

E
0

L

dxx N~x,t !E
L2x

1`

dyK~x,y!N~y,t !

;A~ t !2L31l22tE
0

1

dxE
12x

1`

dyx K~x,y!~xy!2t.

~3.7!

We see that if gelation occurs,t must be equal to
max@11b,(31l)/2#. In the postgel regime, the total ma
a

of
ds

,

e

contained in the sol phase~i.e., finite mass clusters! must be
finite, which imposest.2. We conclude that no gelatio
occurs for max(l,b)<1. In any case,b.1 is forbidden since
it leads to explosive growth of individual particles. Ifb51,
Eq. ~3.3! yieldsM1(t)5et and the total mass growth is faste
than any power oft, which is the telltale of the gelling-
nongelling boundary.

B. No injection

For a while, we specialize to the caseI 50, corresponding
to growth and coalescence. We first exhibit two exact so
tions and then we make a complete study of the scaling
lutions of the general equation.

1. Exact solutions

We can solve Eq.~3.1!, in the caseK(x,y)51, for b
50 andb51. To do this, we consider the Laplace transfo
Z(z,t) of N(s,t), Z(z,t)5*0

1`e2zsN(s,t)ds. Z(0,t) is the
total density of clustersn(t).

For b50, the Laplace transform of Eq.~3.1! with K51
reads

] tZ1zZ5
1

2
Z22Z~0,t !Z. ~3.8!

With n(0)51 and Z(z,0)5Z0(z), we find that Z(0,t)
5n(t)52/(t12) and

Z~z,t !5
e2zt

~ t12!2S 1

4Z0~z!
2

1

2E0

t ezt8

~ t812!2
dt8D . ~3.9!

For a strictly monodisperse initial conditionN(s,t)5d(s
21), the total mass in the system isM1(t)52]zZ(z50,t)
5112ln(t1 1

2) and in the scaling limitt→`,

N~s,t !;
2

t2lnt
e2 s/~ t ln t !. ~3.10!

For b51, the equation forZ is

] tZ2z]zZ5
1

2
Z22Z~0,t !Z ~3.11!

and once againn(t)5Z(0,t)52/(t12). If we choose the
variableu5zet, the equation reduces to a first-order diffe
ential equation in time and the solution is

Z~z,t !5
2

t12

2Z0~zet!

@12Z0~zet!#~ t12!12Z0~zet!
.

~3.12!

With a strictly monodisperse initial distribution,Z0(z)
5e2z, Z(z,t) has a pole atz0(t)52e2tln(112/t), and we
can explicitly computeN(s,t),

N~s,t !5
4

~ t12!2et
exp@2se2tln~112/t !#, ~3.13!
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which leads in the long-time limit to

N~s,t !;
4

t2et
e22s/tet

. ~3.14!

Thus both solutions exhibit dynamic scaling. The cor
sponding solutions for the discrete Smoluchowski equa
have been derived independently by Krapivsky and Red
@22# and coincide with the solutions above in the scali
limit. This coincidence was to be expected since, in the s
ing regime, the divergence ofS(t) leads to the oblivion of
the discrete structure of the equation. The scaling functio
the same as for the exact solution ofK51 without exog-
enous growth, but instead of the usual scaling relation of
~2.1!, we have N(s,t);Y(t)21f „s/S(t)…, where Y(t)
}S2(t)/M1(t) is not a power ofS(t).

A consequence of the logarithmic correction in the ca
b50 is that in contrast to the generic case in Sec. II B,x0 is
equal to zero. The reason is thatS(t) in this case grows
faster than individual particles in the absence of collisio
Hences0(t)/S(t)}1/lnt goes to zero. This point will be fully
discussed in the case of a general kernel under the dyn
scaling assumption. Forb51, the scenario discussed in Se
II B occurs andS(t);tet corresponds to a slowly vanishin
e(t) in Eq. ~2.20!.

2. Scaling theory

In the general case, Eq.~3.1! can be neither solved ana
lytically nor easily simulated. However, some very intere
ing information can be obtained by making use of the sca
assumption. Note that, although it is quite clear from th
homogeneity that Smoluchowski-like equations admit sc
ing solutions, it has never been mathematically proved
these solutions are approached at long times, except in
few cases for which we can obtain the exact solution. Ho
ever, scaling is commonly observed experimentally and
merically for aggregation models, as well as in numeri
solutions of Smoluchowski’s equation@27# when possible,
making this assumption very reasonable.

Some simple arguments may give a qualitative und
standing of the different regimes to be expected for Eq.~3.1!.
Indeed, if we suppress the collision term~i.e., the right-hand
side!, we are left with a continuity equation that describes
set of particles that grow in time withṡ5sb and is associated
with the mass scaleSg(t)}t1/(12b).

Conversely, if we suppress the exogenous growth te
]s(s

bN) on the left-hand side, we have again a stand
Smoluchowski equation describing clustering with mass c
servation. The scaling properties of this equation are w
known @18–20#. The typical mass in the scaling regime
Sc(t)}t1/(12l) andu52.

Thus, when both exogenous growth and collisions are
tive, we expect to observe a ‘‘competition’’ between the tw
dynamical mass scalesSc andSg . If b.l, Sg(t)@Sc(t) and
in the scaling regime we expectS(t)}Sg(t) and z51/(1
2b). If b,l, on the contrary, the typical mass of particl
increases essentially due to collisions, henceS(t)}t1/(12l)

and z51/(12l). In the marginal casel5b, logarithmic
corrections toS(t) may be observed. In fact, we know from
the exact solution ofK51, b505l that such corrections
-
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actually occur. This leads us to a slightly more general sc
ing assumption than the one we made for droplets coa
cence models,

N~s,t !;Y~ t !21f S s

S~ t ! D . ~3.15!

We do nota priori assume thatY(t)}S(t)u since we know
from exact solutions that it is not always true.

Notice that the scaling functionf (x) is not uniquely de-
fined by Eq.~3.15! unless we give a precise definition o
S(t) andY(t). If we know a scaling functionf s(x) for given
definitions ofY andS, any other scaling functionf (x) cor-
responding to other definitions is related tof s by

f ~x!5k f s~jx!, ~3.16!

k and j being two constants. The most usual definition
S(t) ~and the one actually used in numerical simulations! is
Eq. ~2.2!.

From the picture above, it is obvious that the physic
cutoff, i.e., the masss0(t) below which N(s,t) is strictly
zero, scales asSg(t). This is just the translation, in terms o
Smoluchowski’s equation, of the discussion we had for dr
let growth and coalescence. SinceS(t)>s0(t), either S(t)
and Sg(t) have the same scaling and the scaling funct
f (x) is zero below a certain argumentx0.0 or S(t)
@Sg(t), x0 is equal to zero, andf may have a smallx di-
vergencef (x)}x2t, with a polydispersity exponentt>0.

The scaling of the moments of the distributionN(s,t) is
altered by the existence of a polydispersity exponent

Ma5E
s0~ t !

1`

saN~s,t !ds;
S11a

Y E
s0~ t !/S~ t !

1`

xa f ~x!dx.

~3.17!

If there is no polydispersity exponent or ift,11a, the
integral tends to a finite limit whent→` and

Ma~ t !}
S11a

Y
. ~3.18!

If t.11a, the integral diverges and

Ma~ t !}
St

Y
s0~ t !11a2t. ~3.19!

Finally, if t511a,

Ma~ t !}
S11a

Y
ln

S~ t !

s0~ t !
. ~3.20!

Under the general scaling assumption, we get the follo
ing scaling for the different terms of Smoluchowski’s equ
tion:

] tN~s,t !;2
1

Y
S Ẏ

Y
f ~x!1

Ṡ

S
x f8~x! D , ~3.21!

]s@sbN~s,t !#;
Sb21

Y
~xb f !8~x!, ~3.22!

~collision term!;
S11l

Y2
~••• !. ~3.23!
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TABLE I. Results of the scaling theory.

Parameters M1(t) S(t) Y(t)

1.b.l M1}Sb2l S(t)}tz

z5
1

12b

Y}Su

u521l2b

1.l.b M1→const
z5

1
12l

u52

1.l5b
M1}H ln t if m<0

~ ln t!ln~ln t! if m.0

S(t)}(tM1)z

z5
1

12b

Y}
S2

M1

b51
0,l,1

M15M1(0)et S(t)}et/(12l) Y}S2e2t

b51
l50

M15M1(0)et S(t)}tet Y}tS

l51.b
m.0

M1→const S(t)}ebAt Y}S2At

l51.b
m<0

M1→const S(t)}ebt Y}S2

l5b51
m<0

M15M1(0)et S(t)}ebet
Y}S2e2t

l5b51
m<0

M15M1(0)et S(t)}ebAet
Y}S2e2t/2
je
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Another important equation is Eq.~3.3! for the evolution of
the total mass in the system, which, in the absence of in
tion, reduces to

Ṁ15Mb . ~3.24!

Now it is possible to find the asymptotics ofM1, Y, and
S, depending on the values ofl andb, under the sole scaling
assumption. In fact, although the line followed in the de
onstration is quite simple, details are rather intricate due
the multiple cases to be examined. A full length discussio
given in the Appendix and results are summarized in Tab
Here we shall only comment on some interesting points.

The scaling theory is consistent with the qualitative d
cussion above based on the idea of competing dynam
scales. It is found that forl,b,1, S(t) scales ass0(t)
;t1/(12b), Y(t)}S(t)2u, with u521l2b, and the scaling
function is zero below a finitex0. If we return to droplets
models, thisl,b condition just corresponds tod,D and
we find u511d/D. Hence the scaling results of the mea
field theory are in full agreement with the discussion a
results in Sec. II B.

For l.b, S(t) scales ast1/(12l) and the mass is asymp
totically conserved withu52. The scaling function may
have a polydispersity exponent, since nowS(t)@s0(t), and
the scaling equation is,

b@x f8~x!12 f ~x!#5 f ~x!E
0

1`

f ~x1!K~x,x1!dx1

2
1

2E0

x

f ~x1! f ~x2x1!K~x1 ,x2x1!dx1 ,

~3.25!
c-

-
to
is
I.

-
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-
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i.e., the same scaling equation as for the standard Sm
chowski equation without cluster exogenous growth, wh
makes it possible to use all the corresponding results or te
niques@18–20#. For breath figures, this case corresponds
d.D, but as further discussed in Sec. IV, heterogene
growth is always gelling in this case and the mean-field
proximation breaks down.

For l5b, we find thatS(t) is no longer a pure powe
law, but incorporates logarithmic corrections. The total m
in the system increases logarithmically,M1(t)} ln t and
S(t);@ tM1(t)#1/(12b). Once againS(t)@s0(t) and the scal-
ing function is Eq.~3.25!. Thus there is a polydispersity ex
ponent if the kernel hasm>0 ~see below! and there is an
addition ln(lnt) correction form.0 kernels. For heteroge
neous growth,l5b corresponds tod5D and the mean-field
theory accounts for the qualitative difference betweend5D
and d,D observed in numerics~see@9# and below!. This
point will be fully discussed in Sec. IV. This also recove
the scaling behavior of the exact solution forK51 andb
50.

For b51, the scaling of the exact solutionK51, b51 is
recovered. Forl>0, the scaling equation is once again E
~3.25!. Other results in Table I show the great diversity
scaling regimes depending onb, l, andm.

For a constant kernel and 1.b.0, we recover the resul
of Krapivsky and Redner@22#, who assumed that the scalin
function has essentially the same shape as in the caseb50
or the pure aggregation case. From our analysis, we kn
that this assumption is actually not verified. However, it c
be seen that the key point of their demonstration is thatf (x)
has no small-x divergence, which is indeed true.

The fact that the scaling results of thed,D growth and
coalescence are recovered by the Smoluchowski equation
proach gives a firm basis to the heuristic arguments use
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find a posteriori the exponents from the obtained numeric
Moreover, the kinetic equation approach is predictive a
provides a synthesized classification of the aggregation m
els, depending on a limited number of relevant paramet
provided the approximation is justified.

3. Polydispersity exponents

An interesting corollary of the scaling theory of the ge
eralized Smoluchowski equation with growth is that in t
casesb<l and b51, the scaling equation is exactly th
same as for the standard Smoluchowski equation~3.25!,
whereb is called the separation constant, which we set
one by absorbing it in the scaling function~which corre-
sponds to a redefinition ofY). Note that if f is a solution of
Eq. ~3.25!, c11l f (cs) is also a solution, which correspond
to different possible definitions ofS(t) @remember the dis-
cussion above Eq.~3.16!#.

Thus all the results known for the scaling function of t
standard Smoluchowski equation also hold for the gene
ized equation. For instance, the scaling functionf (x) of the
K51, b51 case can be derived from the exact result for
standard Smoluchowski equation withK51, for which
f 0(x)5e2x is a scaling function. For a given definition ofS
andY, the corresponding scaling function forK51, b51 is
obtained usingf s5 f 0 in Eq. ~3.16!. If we use Eq.~2.2! as a
definition of S(t), j is constrained to the valuej52; if we
defineY(t) by M1(t)5S2/Y, we getk54, which leads to

N~s,t !}
4et

S2
e22s/S, ~3.26!

with S(t)}tet in agreement with the exact result Eq.~3.14!.
We can also find the exact scaling function forb51 and

K(x,y)5x1y ~which corresponds tol51). For the stan-
dard Smoluchowski equation, a scaling function isf 1(x)
5x23/2e2x. It is also a scaling function for Eq.~3.1! and we
obtain the exact resultt53/2.

The scaling equation~3.25! for a general kernel was ex
tensively studied in the literature. van Dongen and Er
@18,19# showed that the qualitative shape of the scaling fu
tion f (x) at smallx depends on two parameters: the hom
geneity degree of the kernell and the exponentm defined by
Eq. ~1.2!.

For m,0, the scaling function vanishes as exp@2axm

1o(xm)# at smallx and there is no polydispersity exponen
For kernels withm.0, there is a polydispersity exponentt
511l. For m50, there is also polydispersity, but with
nontrivial exponentt,11l,

t522E
0

1`

xl f ~x!dx. ~3.27!

The determination oft for m50 has long been a cha
lenge because solving numerically Smoluchowski’s equa
proved rather difficult and often unsuccessful. Even for
most studiedm50 kernel

KD
d ~x,y!5~x1/D1y1/D!d, ~3.28!
.
d
d-
s,

o
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e
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which corresponds, for instance, to Brownian coalescence@in
a (d12)-dimensional space# with mass-independent diffu
sion constant, very few values oft were known.

This difficulty appears to be overcome by avariational
method, which we have introduced in a recent paper@20#. A
systematic computation oft can now be performed in a
simple way at a very low numerical cost. We report such
computation for the kernelKD

d in @20#. Analytical results
combined with exact inequalities obtained from Eq.~4.7! are
used to check the variational results, which are also in ex
lent agreement with the few values oft available in the
literature.

From the discussion above, we see that the variatio
method can also be used to determinet for Smoluchowski’s
equation with exogenous growth of particles, when polyd
persity occurs, i.e., whenl5b or b51. An interesting
physical application of these results isheterogeneous growth
with d5D, which is in the classb5l. For this problem,b is
equal to 11(v21)/D and the kernel is

K~x,y!5~xv/D1yv/D!~x1/D1y1/D!D21. ~3.29!

This kernel is formally similar to the one describin
diffusion-limited cluster-cluster aggregation@14,15,28#, but
the meaning of the parameters is different. We have

m5H 0 if v>0

v/D if v,0.
~3.30!

The scaling theory yieldsS(t)}(t lnt)z, with z5D/(12v),
and predicts a transition from a polydisperse scaling funct
with a nontrivialt exponent forv>0 to a small-x vanishing
scaling function forv,0.

Consequently, it is interesting to determine the mean-fi
polydispersity exponentt for this kernel using the varia
tional approximation. This will be done in Sec. IV, in whic
we also present comparisons of scaling results from
Smoluchowski equation approach with direct numeri
simulations of heterogeneous growth withd5D.

C. Constant injection

We now move to the case of a constant injection ra
Interest in aggregation models with injection was origina
aroused from applications in chemical engineering~coagula-
tion in stirred tank reactors! and atmosphere sciences@29–
37#. In these contexts, injection was often associated wit
sink term. The emergence of the concept of self-organi
criticality @38,39# resulted in a renewal of interest in aggr
gation models with constant injection@40–42# since these
systems commonly evolve to a steady-state asympt
power-law distribution and therefore provide examples
self-organized critical systems. This behavior is assesse
numerical simulations and exact solutions in one dimens
@41,42#.

Hayakawa@37# studied Smoluchowski’s equation with in
jection of a monomer. He showed that for nongelling sy
tems, with l,1 @18#, the asymptotic steady state had
power-law large-s decay with an exponentt5(31l)/2.
Here we shall investigate the steady state in the presence
growth term with exponentb. We assume for convenienc
that the coagulation kernelK(x,y) is equal toxmyn1xnym.
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l5m1n is the homogeneity degree of the kernel. The
sults are true, however, for any kernel.

We are interested in the asymptotic steady state reac
by the system at long times. We shall see that it has a la
s power-law decay with an exponentt that we are able to
compute in terms ofl andb. To achieve this program, let u
call Za(z,t) the Laplace transform ofsaN(s,t) defined by

Za~z,t !5E
0

1`

saN~s,t !e2zsds, ~3.31!

for which we get

] tZ11zZb5ZmZn2ZmM n2ZnMm1Ie2z. ~3.32!

Now we consider the equation for the steady state,

zZb
`5~Zm

`2Mm
`!~Zn

`2M n
`!1I ~e2z21!. ~3.33!

The large-s behavior of the steady-state distribution is r
flected in the small-z behavior in Laplace space,

Za
`~z!2Ma

`;cazta ~3.34!

if Ma
` is finite. If Ma

` is infinite, it does not appear on th
left-hand side. Note thatM1

` is certainly infinite because
there is constant injection of monomers and no dissipatio
mass~at finite time!. As a consequence, 0,ta,1 for all a
,1. If ta is not an integer then fors→`,

saN~s,t5`!;
ca

2p
G~11ta!s12ta. ~3.35!

As a consequence,t215t05ta1a and

z~Mb1I 1zt212b!}~z2t222l!; ~3.36!

hence if t212b.0, then 152t222l, i.e., t5(3
1l)/2, whereas ift21,b, Mb

` is infinite and does no
appear on the left-hand side of Eq.~3.36! and thent2b
52t222l, i.e., t522b1l. To summarize, we find

t5H ~31l!/2 if b,~11l!/2

21l2b if b.~11l!/2.
~3.37!

Thus we see that the exogenous growth term introduces
following feature: Above a critical growth parameterbc
5(11l)/2, the power-law exponent of the asymptotic sta
depends continuously onb, whereas ifb is less thanbc , the
exponent is unaffected by the growth term.

The caseb5(11l)/2 requires some additional care. In
terpolation of the two regimes above would lead tot51
1b and it is possible to show that there is a logarithm
correctionN(s,1`)}1/(s11blns).

For b,11l, t has the value found by Hayakawa@37# in
the absence of exogenous growth from the same Lap
transform arguments. It is also interesting to derivet from a
more physical argument. For convenience, let us first for
the exogenous growth term~the argument is the same! and
consider the steady-state condition.N`(s) is a stationary dis-
tribution in the sense that if we start fromN(s,t50)
5N`(s), then the distribution does not evolve. From th
-

ed
e-

of

he

e

ce

et

point of view, it becomes clear that the total mass inject
rate I must exactly be compensated by the mass dissipa
by collisions. Thus the total mass flux due to collisions m
be finite. This just means that the steady state is at agel point
and the argument of Sec. III A can be readily adapted
obtaint5(31l)/2. Furthermore, as the total mass is infin
in the steady state, we do not have the restrictiont.2,
which determines the gel criterion for gelation at a fin
time. Here the transition occurs at an infinite time, when
system has self-organized to the critical point of a gel tr
sition.

If we introduce the exogenous growth term into the p
ture, we can also find the exponents from the same argum
Now the mass injection rate isI 1Mb

` . If Mb
` is finite, we

still find t5(31l)/2. If b>(11l)/2, Mb
` is diverging with

such a value oft. Consequently,Mb
` is infinite and the

steady-state condition is now

I 1 lim
L→`

S E
0

L

sbN`~s!ds2C~L ! D 50, ~3.38!

whereC(L) is the integral in Eq.~3.5!. The vanishing of the
divergence imposes 11b2t531l22t and we recovert
521l2b.

D. Constant mass injection

Now we would like to return to the initial problem o
homogeneous nucleation and the corresponding Sm
chowski equation. The corresponding collision kernel hal
52d/D2152b21, just on the borderline of the two re
gimes found for constant injection. The point we make is t
injection of small droplets occurs at a vanishing rate prop
tional to 12f(t), as seen in Sec. II B from a geometric
interpretation. In fact, forgetting geometry,I (t) is imposed
by the fact that the mass injection rate is a constant~by
definition of the model!, say, Ṁ151. Indeed, fromṀ1
5Mb1I , this is equivalent toI (t)512Mb(t). For droplet
deposition and with this choice of constants,Mb(t)5f(t)
and the geometrical argument is recovered.

Accordingly, we now discuss the case ofl52b21 and
constant mass injection M˙

151, i.e.,

I ~ t !512Mb~ t !, ~3.39!

for b,1. Once again, we make the scaling assumption
Eq. ~3.15!. As in homogeneous nucleation,M1(t)}t leads to
Y(t)}S2/t. A very interesting result is thatMb must tend to
1 at long times. First, it is easily seen thatMb(t) cannot
diverge. The reason is that the injection rate of ‘‘area’’ in
existing particles is equal tobM2b21 and is always domi-
nated byMb(t) in the scaling regime. More precisely, th
evolution equation for the occupied area fractionMb is ob-
tained from Eq.~3.1! and since collisions cannot increas
Mb (b,1), we have the inequality

Ṁb<bM2b21112Mb~ t !. ~3.40!

Then, sinceb,1 implies 2b21,b, it is possible to show
that for any value of a possible polydispersity exponent,
have in the scaling regime (Mb2bM2b21);cMb , wherec
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892 57STÉPHANE CUEILLE AND CLÉMENT SIRE
is a strictly positive constant. In fact,Mb@M2b21 and c
51 if t<11b, while Mb}M2b21 and c51/(t212b)
2b/(t22b) if t.11b. This result, combined with Eq
~3.40!, leads to

Ṁb<12cMb~ t !, c.0, ~3.41!

which shows thatMb cannot diverge. It is also clear tha
there is no way thatMb could become negative, since th
smallerMb is, the largerI (t) is. Therefore, if we rule out
any pathological oscillatory behavior,Mb tends to a constan
f̄, which may possibly be zero. Now, iff̄Þ1, then the
injection is asymptotically constant and, from Sec. III
there is a critical steady state, withN(s);1/(s11blns) at
larges, andMb diverges, which is contradictory~in addition,
if f̄.1, the distribution is negative nears51). Thusf̄51,
a nontrivial result that was a necessary condition for
mean field to correctly describe droplets models.

Now let us discuss the scaling properties of the equat
Since the injection term is vanishing, we expect the sca
equation~which describes large clusters! to be the same as in
the case without injection. However, because of the fact
the cutoffs0 is constant and therefore negligible compared
S(t) we must select a solution different from the one o
tained without injection.

To be more precise, we know thatY;S2/t and thatMb
has a finite limit. If we assume that there is polydispers
with t>11b, these two conditions lead toS(t)@t1/(12b)

and we find that the scaling equation is once again
~3.25!, which yieldst<11l,11b, in contradiction with
our assumption. Thust,11b and Mb}tS(t)b21, leading
to

u511b, z5
1

12b
, ~3.42!

which correspond to the results previously obtained for dr
lets deposition and coalescence~with b5d/D). The scaling
equation is Eq.~A22!, with positivea andb. This equation is
nonlinear and is likely to admit several classes of solutio
We have seen that when there is no injection, a solutio
selected that vanishes below a finitex0.0. However, in the
presence of injection the scaling function has no lower cu
(x050) and we can have a polydispersity exponent.

To investigate the small-x behavior off , we introduce the
auxiliary functionw(x)5xb21f (x), which leads to a scaling
equation

2x12bw~x!1x22bw8~x!2xw8~x!2w~x!

5w~x!E
«

1`

w~x1!K̃~x,x1!dx1

2
1

2E«

x2«

w~x1!w~x2x1!K̃~x1 ,x2x1!dx1 , ~3.43!

whereK̃(x,y)5x12by12bK(x,y) (e is included to regular-
ize the collision terms that are separately diverging in
«→0 limit @18#!. We remark that the most diverging term fo
x→0 on the left-hand side is2xw8(x)2w(x), so that, as far
as the determination of the asymptotic behaviorw(x)}x2t8
,

e
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is concerned, we can straightforwardly generalize the res
of van Dongen and Ernst@18,19#. The kernelK̃ has l̃52
1l22b and m̃511m2b, and we find that the function
vanishes at smallx for m̃,0, t8511 l̃ for m̃.0, andt8 is
nontrivial, with

t8511E
0

1`

w~x!xl̃dx,11 l̃ ~3.44!

for m̃50. Therefore, form,b21, we have no polydisper
sity, while for m.b21 we havet521l2b and for m
5b21

t5b1E
0

1`

f ~x!xl112bdx,21l2b. ~3.45!

Now, for l52b21, we find thatt511b if m.b21,
while t is nontrivial and strictly less than 11b for m5b
21. Hence, form<b21 the scaling theory is consisten
while for m.b21 there is a contradiction witht,11b.
The latter case precisely corresponds to droplets depos
@see Eq.~2.13!#. However, a consistent scaling with a no
trivial polydispersity exponent could be obtained if we i
clude pair correlations in the collision kernel and if the r
sulting kernel hasm5b21.

This scenario is to be related to an early numerical w
of Tanaka@43#. Tanaka solved a set of coupled differenti
equations describing growth and coalescence with renu
ation ford52, D53. Dynamical pair correlations due to a
excluded volume were included in an approximate form a
Tanaka found a bimodal droplet mass distribution with
nontrivial polydispersity exponent, in agreement with the
sults described in Sec. II. It seems quite clear that his se
equations becomes equivalent to a Smoluchowski equa
very similar to ours in the long-time limit, but with a colli
sion kernel modified by correlations. It would be interesti
to try to determine the kernel from his equation, althou
this seems to be quite a difficult task.

IV. HETEROGENEOUS GROWTH
WITH POLYDISPERSITY

In Sec. III we found from a mean-field approach that t
kinetics of heterogeneous growth withd5D ~for instance,
disks on a plane or spheres in three dimensions! should be
qualitatively different from its counterpart withd,D. From
the scaling theory of the generalized Smoluchowski eq
tion, we found that there should be a transition from a mo
disperse scaling function forv,0 to a polydisperse function
with a nontrivial polydispersity exponentt for v>0. This
mean-field result is actually very interesting since it corrob
rates numerical simulations performed by Family a
Meakin @9,5#, who found that polydispersity occurs ford
5D52 andv50.5.

Thus our Smoluchowski equation approach sheds ligh
heterogeneous growth withd5D, which was not studied
much due to the fact that interest was primarily focused
d52, D53 relevant to breath figures and also to the fact t
numerical simulations are much more difficult in this ca
~see below!. In this section, first we discuss in detail wh
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should be expected from the mean-field theory and comp
the polydispersity exponents forv>0. Then we presen
some numerical simulations ind52 and discuss the rel
evance of the mean-field theory.

A. Mean-field theory

In Sec. II B it was found that the collision kernel corr
sponding to heterogeneous growth withd5D was

K~x,y!5~xv/D1yv/D!~x1/D1y1/D!D21, ~4.1!

with l511(v21)/D5b. The corresponding generalize
Smoluchowski equation was found to be nongelling forv
<1 and in the following we shall takev,1.

The reason why growth withd5D is different in the
mean field fromd,D is rather subtle. As discussed in Se
III, the competing dynamical mass scales corresponding
exogenous growth and growth by collision,Sg(t) andSc(t),
respectively, are of the same order at long times ford5D,
which leads to a marginal enhancement of the growth of
typical massS(t) and to logarithmic mass growth

S~ t !}~ t ln t !D/~12v! , M1~ t !; ln t. ~4.2!

This implies that the cutoffx05 lims0(t)/S(t) in the scaling
function is zero, in contrast to thed,D case for whichx0
.0, and the scaling equation is the same as for Sm
chowski’s equation without growth.

For v>0 we havem50 and consequently there is a no
trivial polydispersity exponentt. We can use the method
discussed in@20# to studyt. These methods make it possib
to derive exact bounds and excellent approximations fot.
The key relations that we use are, on the one hand, inte
equation~3.27! for t and, on the other hand, a series
integral equations for the momentsMa of t @18# obtained by
multiplying Eq. ~3.25! by xa and integrating overx, for any
value ofa.t21 ~such that the integrals converge in zero!:

2~12a!E
0

`

xa f ~x!dx5E E
0

`

f ~x! f ~y!K~x,y!

3@xa1ya2~x1y!a#dx dy.

~4.3!

As a preliminary remark, let us show that whenD>2, the
exponentt is bigger than one. Let us assume thatt,1.
Since the scaling function is integrable in zero, we can w
Eq. ~4.3! with a50,

2E
0

1`

f ~x!dx5E E
0

1`

f ~x! f ~y!K~x,y!dx dy. ~4.4!

From the inequality,

K~x,y!5~xv/D 1yv/D!~x1/D1y1/D!D21>xl1yl

~4.5!

for D>2, we see that Eq.~4.4! leads to

E
0

1`

f ~x!dx>E
0

1`

f ~x!dxE
0

1`

yl f ~y!dy, ~4.6!
te

.
to

e

u-

ral

e

which, combined with Eq.~3.27!, impliest>1, in contradic-
tion with our assumption.

One can also find better exact bounds. Combining E
~3.27! and ~4.3!, one obtains

t522~12a!
**0

`g~x,y!dx dy

**0
`g~x,y!A~x/y!dx dy

, ~4.7!

with g(x,y)5 f (x) f (y)(xayl1xlya) and A(u)5@11ua

2(11u)a#K(1,u)/(ua1ul).
The ratio in Eq.~4.7! is the inverse of the average o

A(x/y) with weightg(x,y), so that computing the maximum
Ma and the minimumMa of A for various values ofa leads
to exact bounds fort that can be used to check numeric
evaluations oft @20# since Eq.~4.7! implies

22~12a!/ma<t<22~12a!/Ma . ~4.8!

As a concrete example, let us determine such bounds
D52 andv50.5. Sincet,11l ~herel50.75), Eq.~4.7!
holds fora5l, for which we can numerically compute th
minimum and maximum ofA. From Eq.~4.8!, this leads to
the inequality 1.5<t<1.607 175. Thus Eq.~4.8! holds for
0.607 175,a<l and we can compute new bounds for ea
a in this interval and find the tightest bounds. The upp
bound obtained fora5l cannot be improved sinceA(0)
51 for a,l, hence 22(12a)/Ma>11a, but we obtain a
better lower bound of 1.54 fora50.68. Table II presents
such exact bounds forD52.

The next step is to use a variational method to comp
accurate values oft at very low numerical cost@20#. The
basic idea of the variational approximation is to choose
parametrized family of variational functions and minimiz
the violation of Eq.~4.7! for a well-chosen sample of value
of a. The key point is the choice of the variational functio
As argumented in@20#, a natural three parameters class
functions is

f v~x,t0 ,c1 ,c2!5S 1

xt0
1

c1

xt1~t0!
1

c2

xlD e2x. ~4.9!

The last term corresponds to the exact asymptotic deca
largex of the scaling function@18,19#, while t0 is the poly-
dispersity exponent andt1 is the subleading exponent i
smallx ~its value as a function oft0 is taken to be the sam
as for the exact scaling function!. This class of function has
the correct large-x and small-x asymptotic behavior expecte

TABLE II. Exact upper and lower bounds.

v tm tM

0.02 1.020 1.510
0.2 1.339 1.588
0.3 1.472 1.594
0.4 1.514 1.601
0.5 1.540 1.608
0.6 1.572 1.614
0.8 1.623 1.800
0.9 1.633 1.900
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for the scaling function. In addition, it contains the exa
scaling functions forK51 andK5x1y, therefore the varia-
tional approximation yields the exact result fort in these
cases~as checked in@20#!.

A natural error function, measuring the violation of E
~4.7! for a set ofn momentsa i , is simply

x2~ f v!5(
i

@t02Ga i
~ f v!#2, ~4.10!

whereGa i
( f v) is the right-hand side Eq.~4.7! for a5a i and

f 5 f v . This error function is, by construction, strictly zer
for the exact scaling function. For the chosen class of va
tional functions,Ga i

( f v) can be expressed in terms ofG

functions and simple one-dimensional integrals, wh
makes its numerical computation extremely fast@20#.

FIG. 4. Exponentt for the kernel (xv/D1yv/D)D21 computed
with the variational approximation forv.0 and 1<D<3. The
theoreticalv→0 limit of t, t05221/D is plotted on theY axis
~squares!.

FIG. 5. Variational approximation fort whenv50, compared
to its v→01 limit t05221/D. Both t and t0 tend to 2 when
D→`.
t

-

h

The variational approximation was used to study the
havior of t. The set of moments was chosen as discusse
@20#. Results are shown in Fig. 4 for different values ofD
andv.0, while Fig. 5 shows the values oft for v50. For
D51, the kernel is equal toxv1yv, corresponding to the
kernelK1/v

1 with the notations of Eq.~3.28!, which was ex-
tensively studied in@20#. The exponentt is bigger than 1 for
any v.0, while t50 whenv50. Since 1<t,11v for
v.0, we see thatt→1 whenv→0, hencet has a discon-
tinuity at v50. For anyD andv50, the kernel also reduce
to KD

D21 .
It appears thatt has a discontinuity atv50 not only for

D51, but for D.1 as well: Whenv→01, t has the limit
t0 bigger than its value atv50. Thus the discontinuity tha
was rigorously shown to exist forD51 pertains toD>1. It
is difficult to extract the value oft0 accurately since the
variational algorithm appears to be less accurate for sm
values ofv ~for v typically less than 0.1). However,t0
seems to be close to 221/D, which is the value of 11l at
v50. Actually, a heuristic argument, inspired from the d
cussion for theKD

d kernel in the large-D (d.1) limit, yields
t05221/D.

Let f 0(x) be the exact scaling function forv50. From
Eq. ~3.27! we get

t05tv501 lim
v→01

E
0

1`

@ f ~x!2 f 0~x!#x11~v21!/Ddx

~4.11!

and the limit on the right-hand side of Eq.~4.11! must be
strictly positive, although@ f (x)2 f 0(x)#→0 for any x.0.
How can this occur? Sincet.tv50 ~for small v), @ f (x)
2 f 0(x)#;c/xt whenx→0 andc must vanish whenv→0.
Thus the integral has an integrable singular
cx11(v21)/D2t. If t0,221/D ~we know thatt0<221/D
from t,11l), the contribution of the singularity is wiped
out by the vanishing ofc, whereas, ift05221/D, the inte-
gral is equivalent toc/(t01v/D2t) and it has the finite
limit t02tv50 provided c vanishes as (t02tv50)(t0
1v/D2t).

Figure 5 plots the value oft and t05221/D for v50
and 1<D<6. Botht andt0 have the limit 2 whenD→`,
which implies that the discontinuity inv50 vanishes at
largeD, as can be seen on the figure. The reason whyt→2
is that whenD→`,

K~x,y!52D@~xy!1/21O~1/D !# ~4.12!

and therefore theD→` limit of f̃ 52Df is solution of Eq.
~3.25! with the kernel (xy)1/2, which is am.0 kernel with
exponentt52 ~the same trick was used in@20# to study the
d→`, d5lD limit for the KD

d kernel!.
For v,0, we havem5v/D,0, and using the results o

van Dongen and Ernst@19#, we have, forx→0,

f ~x!;B~v!x2g~v!expS D

b~v!v
xv/DE

0

1`

x121/Df ~x!dxD ,

~4.13!
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where B, g, and b5 limṠS222lY are v-dependent con-
stants. These constants also depend on the definitions ofY(t)
andS(t), but g→2 whenm→0. For a given definition, say

S~ t !5^s2&/^s&, Y~ t !5S2/M1 , ~4.14!

van Dongen and Ernst showed that the scaling func
crosses over to them50 ~polydisperse! case whenm→0
since the small-x asymptote tends toB(0)x2t, where t
5b21@22*0

1`x121/Df (x)dx# is precisely them50 polydis-
persity exponent@we had setb51 in Eq. ~3.27!#.

Consequently, we should observe this crossover in
merical simulation. Moreover, for small, but finitev, the
critical xc below which f (x) significantly departs from the
power law corresponds tom lnxc of order one. Thus it is
reasonable to expect a scaling behavior whenv→02,

f ~x,v!5xc~v!2tg@x/xc~v!#, ~4.15!

with xc(v)5exp@2c/v1o(1/v)#, g(y)→0 at smally, and
g(y)}y2t at largey.

B. Numerical simulations

The mean-field theory is in full agreement with the obs
vation by Family and Meakin@9# and Meakin@5# of a poly-
dispersity exponent in simulations withd5D52 and v
51/2. To check the mean-field prediction of a transiti
from monodispersity to polydispersity atv50, we have per-
formed simulations ind52 for various values of the growth
exponentv. In one step of the simulation, all the drople
radii were increased of an amountdr 5r vdt and then colli-
sions were looked for and resolved. In most of the simu
tions, the time increasedt was equal to 0.005. It was chose
small enough such that further reduction would not lead
significant modification of the results. As can be intuitive
understood, the number of droplets decreases much faste

FIG. 6. Typical droplet configuration in the scaling regime
growth and coalescence withd5D52, obtained here forv521,
from 262 144 droplets of radius 0.75 in the initial condition on
102431024 lattice. The picture represents the whole system~with
periodic boundary conditions! at t55.0 (S57693.9). The number
of droplets has dropped to 287.
n

u-

-

-

o

for

d5D than forD.d. In the scaling regime, it was cut by
factor of more than 1000 and we were obliged to start from
huge number of droplets~about 2.53105) and perform a
large number of simulations to obtain acceptable statist
without being able to reach very large times. Figure 6 sho
a configuration obtained att55.0 for v521 from an initial
configuration of 10242 droplets. The scaling form Eq.~3.15!
was used withY5tS11b to obtain convincing data collaps
for the mass distribution, as shown in Fig. 7. Although t
distribution of masses looks quite broad in Fig. 6, the scal
function vanishes whenx→0, in agreement with the mean
field theory.

Figure 8 plots the scaling functions for several values
v. The results are consistent with a transition from a smax

FIG. 7. Scaled mass distributions at three stages in the sim
tion of heterogeneous growth withv521. These results were ob
tained from 96 simulations. In each simulation, 262 144 droplets
radius 0.75 were initially randomly placed on a 102431024 lattice
~without overlap!.

FIG. 8. Smallx5s/S behavior of the scaled mass distribution
obtained in numerical simulations for different values of the grow
exponentv. N(s,t) was normalized by the total initial number o
dropletsn0.
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diverging scaling function forv>0 to a small-x vanishing
scaling function for negative value ofv. For the values of
negativev considered, the scaling function, as visible in F
7, although vanishing whenx→0, is quite broad, with a
maximum at a valuex significantly smaller than 1. When
v→02, we observe a crossover to thev50 power law and
the position of the maximum of the scaling function rapid
tends to zero whenv→0, consistently with the discussio
around Eq.~4.15!. Moreover, the exponent extracted fro
the numerics is about 1.2, which compares well witht
51.108 from the mean field. However, thet exponents for
v50 andv50.5 do not seem to be significantly different,
contrast with the quite large discontinuity in the mean fie
Figure 9 shows the evolution ofS(t) for v523. In the
scaling regime,S(t) is seen to grow much faster tha
tD/(12v)5At, which is consistent with the mean-field log
rithmic enhancement.

Hence the mean-field approximation yields a qualitativ
correct description of numerical results ford5D. However,
this approximation is clearly bound to break down at ve
long times, probably unreachable so far to numerical sim
lations. The reason is that the mean fieldM1(t) diverges,
while the actualM1(t) cannot diverge from a geometric con
straint, which, of course, is absent in the mean-field theo
Indeed, ford5D, M1(t) is also proportional to the occupie
area fraction and is therefore bounded. This means tha
long times, strong density-density correlations and/or m
tiple collisions play a crucial role and are not taken in
account in the mean-field theory. Consequently, the up
critical dimension is infinite ford5D. However, since the
divergence ofM1 is only marginal, the mean-field descrip
tion should be essentially correct fort,tc , where tc is a
large crossover time. Thus the qualitative agreement betw
the mean field and numerics can be explained by the fact
tc is too large to be observed.

The mean-field approximation also breaks down for
d.D because the occupied surface fractionMd/D algebra-
ically diverges. Since the divergence is algebraic, we exp

FIG. 9. For v523, S(t) grows much faster thantD/(12v)

~slope 0.5) even in the corresponding scaling regime (t.50), a
behavior that may be related to logarithmic enhancement ofS in the
mean field.
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the crossover timetc to be much shorter than ford5D. In
fact, the system is obviously gelling ford.D and allv since
the occupied surface increases in a coalescence~which leads
to avalanches of collisions!. For instance, numerical simula
tions performed ford52, v521, andD51.7 show gela-
tion at a finite timetg'0.12. The gelation time is nearl
unaffected when doubling the mass of the sample, keep
the same initial density and mass of the droplets, or reduc
the time step by a factor 2, and thus seems to be well defi
in the continuous time and thermodynamic limit. This ca
corresponds to a nongelling system according to the me
field gelling criterion d.D112v, which appears to be
only a sufficient condition.

V. CONCLUSION

In this article we have extensively studied a generaliz
Smoluchowski equation corresponding to aggregation p
cesses for which particles~or clusters! grow between colli-
sions, withṡ5Asb, and small particles~monomers! are in-
jected. A physical motivation for this work is drople
nucleation and we have derived generalized Smoluchow
equation directly and found the collision kernel for two mo
els describing, respectively, homogeneous and heter
neous nucleation.

For a generic kernel, with parametersl,m, we have
shown that the gelation criterion was max(l,b).1. We have
devoted much time to the study of the equationwithout in-
jection, for which we have provided two exact solutions. T
scaling properties for a generic kernel are seen to be stro
affected by the exogenous growth term and depend onb, l,
andm. For l.b, however, the scaling is the same as for t
standard equation. For the interesting casel5b, the behav-
ior of the typical massS(t) is modified, but the scaling func
tion is unchanged. Forl,b, the scaling function is qualita
tively different and vanishes at a finitex0.0.

We have also studied the case of aconstant injection rate
of monomers. The distribution reaches an asymptotic ste
state with a power law tailN`(s)}s2t and we find thatt
depends onb andl.

We have paid special attention to the case of aconstant
mass injection rateandl52b21, related to homogeneou
nucleation. This corresponds to a time-dependent, s
consistent injection rateI (t)}c2Mb(t). We have shown
that I (t) vanishes at long times, in agreement with the dro
let deposition and coalescence model. For droplets dep
tion, Mb is proportional to the surface coverage and the v
ishing of the injection rate corresponds to the saturation
the coverage to 1. Thus our self-consistent Smoluchow
equation recovers a merely geometrical constraint, whic
quite nontrivial.

As far as scaling is concerned, we have found consis
results for m<b21, with nontrivial polydispersity expo-
nents form5b21, recoveringu511b andz51/(12b) as
for the droplets deposition and coalescence model. Howe
for m.b21 kernels, we could not find a consistent scali
and there might be no scaling solution with a constant m
injection rate. The mean-field kernel for droplets deposit
and coalescence hasm.b21 and taking into accoun
excluded-volume pair correlations may be essential to ob
a consistent description by a kinetic equation, including
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nontrivial polydispersity exponent ifm is switched tob21.
It is quite difficult though to study these correlations eith
numerically or analytically.

Finally, we have applied these results to droplet grow
and coalescence withd5D. We have shown that Smolu
chowski’s approach accounts for the qualitative difference
the scaling function with thed,D case. We have compute
nontrivial polydispersity exponents occurring forv>0 and
described the crossover from monodispersity to polydisp
sity occurring forv→02. We have compared these theore
ical results with numerical simulations, with good agre
ment, despite mean-field limitations, which we ha
discussed.

As a conclusion we would like to point out that one of t
main reasons why people have become increasingly in
ested in breath figures is that it is an example of ageometri-
cally constrainedgrowth process, where diffusion plays
minor role, in contrast with diffusion-limited cluster-cluste
aggregation@14,15,28# or Brownian coalescence of drople
@44#. Therefore, one could doubt that neglecting dens
density correlations may have no dramatic consequences
deed, for homogeneous nucleation, we have seen that
correlations may be crucial to finding a correct scaling fu
tion and we also found an infinite upper critical dimensi
for heterogeneousd>D nucleation. However, we hav
shown that Smoluchowski’s equation in an extended fo
could be successfully used to describe heterogeneous gr
for d,D, that it was qualitatively correct ford5D in the
regime accessible to simulations, and that it also gives v
interesting insights into homogeneous growth, which was
a priori obvious.

ACKNOWLEDGMENT

We are very grateful to P. L. Krapivsky for helpful co
respondence.

APPENDIX: SCALING THEORY WITHOUT INJECTION

In this appendix we shall give a detailed demonstration
the scaling results given in Sec. III B 2 for the generaliz
Smoluchowski equation without injection of monomers. W
assume that starting from a narrow distribution of drople
the late-time solution of Eq.~3.1! has the scaling form of Eq
~3.15!. In our demonstration, we shall always use the f
that S(t) cannot be negligible compared tos0(t);t1/(12b),
the lower cutoff, from the discussion in Sec. III B 2. W
shall also implicitly assume thatY(t), S(t), and all the mo-
ments ofN(s,t) are asymptotically regular convex or co
cave functions.

1. Within the nongelling domain

To start with, let us study the casel,1 andb,1, i.e.,
nongelling systems that are not on the gelling boundary.
discussion is based on the fact that eitherS(t)@s0(t) or
S(t)}s0(t). We shall study the implications of both poss
bilities.
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(a) Case S@s0

Let us assume thatS(t)@s0(t) or, equivalently, that
Sb21!Ṡ/S. We see that the growth term~3.22! is much
smaller than Eq.~3.21! in the scaling limit and the scaling
equation is,

bx f8~x!1a f~x!5 f ~x!E
0

1`

f ~x1!K~x,x1!dx1

2
1

2E0

x

f ~x1! f ~x2x1!K~x1 ,x2x1!dx1

~A1!

whereb5 limṠS222lY anda5 limẎS212l are positive and
possibly zero or infinite.

For finite a andb, this equation is very close to the sta
dard Smoluchowski equation~1.1! with the same kernelK,
which corresponds toa52b and 0,a,1` and was well
studied in the literature@18–20#. The polydispersity expo-
nent t, if any, has the upper boundt<11l,2 ~see Sec.
III B 3 !. As a consequence, from Eq.~3.18! we have

M1~ t !}S2/Y. ~A2!

From Eq.~3.24! we see thatM1(t) is nondecreasing. Thu
M1(t) either tends to a finite limit or goes to infinity.

~i! If M1(t) tends to a finite limit, then, necessarily from
Eq. ~A2!, Y}S2. The scaling of Eq.~3.21! with Eq. ~3.23!
requiresṠ}Sl, hence

S~ t !}t1/~12l!. ~A3!

To be consistent with our assumption thatS(t)@t1/(12b), we
must havel.b. In addition, from Eq.~3.24!, a necessary
condition for M1(t) to have a large-t finite limit is that
Mb(t) must be an integrable function. Ift,11b, Mb

scales asS11b/Y, i.e., Mb}t (b21)/(12l), and is integrable
sincel.b.

If t.11b, we have, from Eq.~3.19!,

Mb}S~ t !t22s0~ t !11b2t!s0~ t !b21}t21 ~A4!

sincet,2 andS(t)@s0(t). Therefore,Mb , being equiva-
lent to a power law much less than 1/t, is integrable. Ift
511b, from Eq. ~3.20!,

Mb}S~ t !b21ln~S/s0!}t ~b21!/~12l! ln t, ~A5!

which is integrable whenl.b.
~ii ! Now let us consider the case whenM1(t) diverges at

long times. From Eqs.~3.24!, ~A2!, ~3.19!, and ~3.20! we
obtain

Ṁ1}H M1Sb21 if t,11b

M1St22s0~ t !11b2t if t.11b

M1Sb21ln~S/s0! if t511b.

~A6!

In the three cases,S@s0 implies thatṀ1!M1s0
b21, hence

Ṁ1!
M1

t
. ~A7!
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Therefore,M1(t)!ta for any a.0. From Eq.~A2! and the
fact thatṠ/S is at least of order 1/t sinceS(t)@t1/(12b), Eq.
~A7! requires that

2
Ṡ

S
;

Ẏ

Y
. ~A8!

Thus the scaling condition between Eqs.~3.21! and~3.23! is
simply

Ṡ

S
}

S11l

Y
}M1Sl21, ~A9!

which implies thatS12l is dominated by a power law. Com
bined with the fact thatS(t)@t1/(12b), this requires that

Ṡ

S
}

1

t
~A10!

and

M1}t21S12l@t ~b2l!/~12b!, ~A11!

thus, from Eq.~A7!, we must havel>b. Now, combining
Eqs.~A11! and ~A6!, we see that

Ṁ1}M1
2a1t2a2@ ln~ t ~l2b!/~12b! M1!#a3 ~A12!

(a351 if t511b; otherwisea350), where

a25H 12b

12l
if l<b

22t

12l
1

t212b

12b
if t.11b.

~A13!

SinceM1→`, the right-hand side of Eq.~A12! must be
nonintegrable and asM1 is much smaller than any positiv
power oft, this implies thata2<1. Sincet<11l, a2.1 if
l.b. Therefore, we must havel<b. However, we already
found thatl>b, thus l must be equal tob. As a conse-
quence,t is never bigger than 11b511l and we can dis-
tinguish betweenm.0 kernels, for whicht511l511b,
andm<0 kernels, for which there is no polydispersity exp
nent ort,11b.

Let us start withm<0 kernels. Ast,11b and l5b,
Eq. ~A12! is reduced toṀ1}1/t, which leads to

M1~ t !} ln t. ~A14!

For am.0 kernel,t511l511b and Eq.~A12! leads to

Ṁ1}~ ln M1!/t; ~A15!

it is easily seen that

M1~ t !}~ ln t !ln~ ln t !. ~A16!

In both cases, we have

S~ t !}~ tM1!1/~12b!, ~A17!

Y~ t !}S2/M1 . ~A18!
Thus the initial assumption thatS(t)@s0(t) implies that
l>b and that the scaling equation is Eq.~A1! with a52b

~since 2Ṡ/S;Ẏ/Y) and 0,a,1` and is the same as fo
the standard Smoluchowski equation with the same kern

(b) Case S}s0

Conversely, let us assume thatS(t)}t1/(12b). If Ẏ/Y
@Ṡ/S}1/t, Y increases faster than any power law, t
growth term is still negligible at long times, and Eqs.~3.21!
and~3.23! are of the same order, henceS11l/Y}Ẏ/Y, which
is contradictory, forS11l/Y vanishes faster than any powe
law while Ẏ/Y@1/t.

ThusẎ/Y5O(Ṡ/S) and both terms on the right-hand sid
of Smoluchowski’s equation are of the same order at lo
times asṠ/S}Sb21. In addition, both terms must scale as t
collision term; otherwise the obtained scaling equation
no physical solution vanishing below a finite argume
x0.0. Thus Eqs.~3.22! and ~3.23! must be of the same or
der, which yields

Sb21

Y
}

S11l

Y2
~A19!

andY(t)}S(t)21l2b. The fact that the scaling function van
ishes at a finitex0.0 ensures thatM1(t)}S2/Y, hence

M1~ t !}S~ t !b2l. ~A20!

Since M1(t) is nondecreasing, we must havel<b. How-
ever, if l5b, Eq. ~3.3! yields

Ṁ1}1/t, ~A21!

henceM1(t)} lnt, which is in contradiction with Eq.~A20!.
Therefore, one must havel,b. The scaling equation has th
form

b@u f ~x!1x f8~x!#2a@xb f ~x!#8

5 f ~x!E
0

1`

f ~x1!K~x,x1!dx1

2
1

2E0

x

f ~x1! f ~x2x1!K~x1 ,x2x1!dx1 . ~A22!

(c) Conclusion

SinceS(t)>s0(t), the collection of the two cases we ex
amined above leads to the conclusion that ifl,1 and b
,1, there are three main regimes of scaling, in agreem
with the qualitative discussion in Sec. III B 2. Ifb.l, S(t)
scales asSg(t)}t1/(12b), Y(t)}S(t)u, with u521l2b,
and there is no polydispersity exponent since the sca
function is zero below a finitex0. If b,l, S(t) scales as
Sc(t)}t1/(12l), the mass is asymptotically conserved, i.
M1(t) tends to a constant, andu52. There can be a poly
dispersity exponent, which is the same as for the stand
Smoluchowski equation~1.1! with the same kernel.

Eventually, in the marginal case whenl5b, the scaling
of S(t) depends on the kernel not only through its homog
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neity l, but also through itsm exponent. As in theb,l
case, the scaling equation is the same as for Smoluchow
equation with the same kernel. Form<0 kernels, the mass in
the systemM1(t)} ln t, while for m.0 kernels, witht51
1l, M1(t)}t(ln t)ln(ln t). In both cases,S}(tM1)1/(12b)

andY}S2/M1.
These scaling results can be compared to the caseK51,

b50, which we solved exactly. We found that the conve
tional scaling breaks down, that, with the proper scal
form, the scaling function is the same as for the exac
solvable standard Smoluchowski equation without
growth term, and thatS(t)}(t ln t), M1(t)} ln t, and Y
}t2ln t, just as predicted by the scaling theory.

2. l51 and b<1

For l51 andb,1, it is possible to follow the same lin
of reasoning, with a few modifications. In this case, one
to distinguish betweenm.0 andm>0 ~this is also true for
the standard Smoluchowski equation withl51 @19#! since
for m.0, we findt52 and the scaling ofM1 has an extra
ln(S/s0). It is found that M1 is asymptotically conserved
S(t)@s0(t), and the scaling equation is Eq.~A1! with a

52b,1`. For m.0, one hasṠ}S/( lnS), which leads to

S~ t !}ebAt, ~A23!

whereas ifm<0,

S~ t !}ebt, ~A24!

whereb cannot be derived from the scaling theory.

3. b51 and l<1

In this cases0(t)}et and the discussion is quite differen
From Eq.~3.24! we see that

M1~ t !5M1~0!et. ~A25!

Since S(t)>s0(t)}et, we have in the long-time limitṠ/S
>1. Let us assume thatṠ/S@1, i.e., thatS(t) is bigger than
any exponential functioneat, which means that Eq.~3.21! is
much bigger than Eq.~3.22! ~which scales as 1/Y since
b51!. From Eqs.~3.18!, ~3.19!, and~3.20! it is clear that

S2/Y5O„M1~ t !…5O~et!. ~A26!

Consequently, if Eq.~3.21! scales as Eq.~3.23!, then Ṡ/Sl

5O(et) andẎ/Y(11l)/25O(et/2). Sincel,1, these two re-
lations are in contradiction with the assumption thatS is
much bigger than any exponential function@which implies
the same property forY, through Eq.~A26!#. We see that if
Ṡ/S@1, Eq.~3.21! is the leading term in the scaling limit an
the scaling function is a pure power lawf (x)5cx2t with
t5 lim( Ẏ/Y)(S/Ṡ). One must havet.2 such that the tota
mass in the system is finite at finite times in the scal
regime. Making use of Eq.~3.19!, we find that n(t)
}M1(t)/s0(t) would tend to a finite valuen`.0, which is
unphysical.
i’s
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g
y
e
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g

Therefore,Ṡ/S is of order 1. From arguments very simila
to those we just used, it is easily seen thatẎ/Y cannot be
much bigger than 1. Thus, Eq.~3.21! scales as Eq.~3.22!. If
Ẏ/Y→1 andṠ/S→1, the left-hand side of Eq.~3.1! vanishes
and we have to take into account the subleading terms in
scaling limit. This occurs forl50, as will be seen below.

If the left-hand side does not vanish, the scaling with E
~3.23! leads toS11l}Y and the scaling equation is onc
again Eq. ~A1!, but now with b/a5(12Ṡ/S)/(12Ẏ/Y).
Consequently, the polydispersity exponent, if any, is le
than 11l and Eq. ~A2! holds, leading toS2}Yet. Since
S11l}Y, we have

S~ t !}et/~12l!, ~A27!

Y~ t !}S2e2t, ~A28!

which excludesl,0, sinceS(t)>s0(t)5et, and alsol50
for which Ṡ/S→1 andẎ/Y→1. Note that in thel.0 case,
we find a52b and once again the scaling equation is t
same as for the standard Smoluchowski equation.

Indeed, for the exactly solvable caseK51, b51, which
corresponds tol50, we found thatS(t)}tet and Y(t)
}S2/et, thus Ṡ/S→1 andẎ/Y→1. Thus, to treat thel50
case, we shall writeS(t)5X(t)M1(t), with Ẋ/X!1, and we
haveY}S2/M15XS. The right-hand side of Eq.~3.1! scales
as

2
1

Y
@2 f ~x!1x f8~x!#

Ẋ

X
, ~A29!

while the left-hand side scales as

S

Y2
~••• !}

X

Y
~••• !, ~A30!

which leads toX(t)}t, recovering the exact result forK51.
Once again the scaling function is Eq.~A1! with a52b,
1`. The polydispersity exponentt is strictly less than 2,
which justifiesa posteriori that Y}S2/M1 ~it is possible to
show that assumingt.2 leads to a contradiction!. However,
for l,0, we were unable to find a consistent scaling.

4. l51 and b51

In this case we still haveM1(t)}et ands0(t);et, but it is
easily seen with the same kind of arguments as above
one must haveṠ/S@1. Thus the exogenous growth ter
~3.22! is negligible and the scaling of Eqs.~3.21! and~3.22!
yields Ṡ/S}S2/Y.

For m<0 kernels, one hasM1}S2/Y and we obtainṠ/S
}et, leading to

S~ t !}ebet
. ~A31!

For m.0, we havet52 and M1}S2ln(S/et)/Y, leading to
Ṡ/S}et/ ln(S) and

S~ t !}ebAet
. ~A32!

In these expressionsb is an unknown positive constant.
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